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1. INTRODUCTION

In this note M denotes a subspace of the complex normed linear space W.
An element TT in M is called a best approximate to an element I in W if

III - m II ? III - TT II

for all m in M; TT is a unique best approximate to I if the inequality is strict
for all m in M, m =1= TT; TT is a strongly unique best approximate to I if there
exists a real number r > 0 such that

111- m II ? III - TT II + r IITT - mil

for all m in M. When M is a Haar subspace of C(X), the space of continuous
real valued functions on a compact Hausdorff space X with the supremum
norm, Newman and Shapiro [4] have shown that to every I in C(X) there
exists a strongly unique best approximate from M. One concludes from
Haar's theorem [2] that when M is a finite dimensional subspace of C(X),
but not a Haar subspace, there exists at least one I in C(X) to which a best
approximate from M is not unique and, hence, not strongly unique.

In the theorems below we characterize those elements of W for which
the best approximate from M is strongly unique. This is done by extending
a notion introduced by Haar [2]. When M is a finite dimensional subspace
of C(X) and X a compact subset of n-dimensional Euclidean space, Haar
characterized the best approximate to an element I in C(X) of norm one by
means of particular supporting hyperplane to the unit ball in <M,f) (the
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256 STRONG UNICITY

linear span of M andlin W). We characterize a strongly unique best approxi­
mate in ~n arbitrary normed linear space W by means of a particular sup­
porting cone to the unit ball in <M,f).

In addition, we give two other characterizations of strong unicity, one of
which is a "refinement" of the Kolmogorov condition [3] when M is a
finite dimensional subspace of C(X).

2. DISCUSSION AND NOTATION

IfI belongs to M then TT = I is the unique best approximate to I from M
and it is trivially strongly unique. Henceforth, we assume that I is an arbi­
trarily chosen but fixed element of Wand that I rf: M.

We denote by <M,f) the linear span of M and J, and by <M,l)* the
dual of <M,f). Further, for each TT E M we let

2 17 = {L E <M,f)*: L(f - TT) = III - TT II and II L II = I}.

Fixing TT E M and letting B = {z E <M,l): II z II = III - TT II} we remark that
2 17 is exactly the set of continuous linear functionals L defined on <M, l)
such that {z E <M,l): Re Lz = III - TT II} is a supporting plane to B at
1- TT. For if L E <M,f)* is such that {z E <M,f): Re Lz = III - TT II} is
a supporting plane to B at 1- TT then Re Lz ~ II z II for all z E <M,l).
Hence, for every complex number a and all m E M one has

I L(m + af)1 2 = L(m + af) L(m + af)

= L[(L(m + af))(m + af)]

= Re L[L(m + af)(m + af)]

~ I L(m + af)111 m + alii.

Thus, II L II ~ 1. Thus, since Re L(f - TT) = III - TT II, one actually has
L(f - TT) = III - TT II. Thus, L E 2 17 • The converse follows immediately.

For each TT EM we write K l7 = {z E <M,l): Re Lz ~ III - TT II VL E 2 17}.

The set K7T is the supporting cone to the ball in <M,f) of radius III - TT II
at the point I - TT. Further, for each TT E M we denote by L 7T that element
of <M,l)* defined by L l7(m + af) = a III - TT II for all mE M and for all
complex numbers a. It follows that II L l7 II )': 1.

Haar's result [2] (as is well known) can be stated in the setting of an
arbitrary normed linear space as follows: The element TT E M is a best approxi­
mate to IE W if and only if II L l7 II = 1, i.e., if and only if L l7 E 2 17 ; lurther
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if 1T is a best approximate to I then it is unique if and only if the hyperplane
{z E <M,/): Re Lrrz = III - 1T II} intersects the ball in <M,J) 01 radius
III - 1T II at precisely1- 1T.

To illustrate Haar's ideas and give a geometric interpretation of the theo­
rems below we discuss two examples. In both Examples 1 and 2, W is taken
to be {(aI' a2): al , a2 are real} (with the usual rules for addition and scalar
multiplication), M = {(O, a2): a2 is real}, and 1= (1,0). In Example 1 the
norm is the 12 or Euclidean norm, i.e., II(a1 , a2)11 = (a12+ a22)1/2 and in
Example 2 the norm is taken to be the II norm, i.e., II(al' a2)11 = Ia1 I + Ia2 [.

The vertical line through I in each case represents the hyperplane defined
by Lo , and the closed curves B denote the unit circle in <M,l). In both
cases 0 is a unique best approximate to f In Example I zero is not a strongly
unique best approximate to I; in Example 2 it is. In each case the shaded
areas represent the supporting cone Ko . Roughly speaking the theorems
below indicate that if the unit ball B is "tangent" to the hyperplane defined
by Lo then 0 is not a strongly unique best approximate, otherwise it is. Or as
Theorems 3 and 4 assert, in the case when M is a finite dimensional subspace
of a real normed linear space, 0 is a strongly unique best approximate to I
if and only if the supporting cone Ko intersects the hyperplane defined by
Lo at exactly one point, namely I; see the foregoing examples.

Example 1.

f
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Example 2.

In the proof of Theorem I below we assume that I is normalized so that
1 = III11 = infmeM III - m II. The following proposition shows that this
normalization assumption can be made without loss of generality.

PROPOSITION 1. If the best approximate to Ilrom M is strongly unique
then so is the best approximate to every element 01 <M,J). More precisely,
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suppose that for some 7T E M there exists r > 0 such that Ilf - m II ~
Ilf - 7T II + r 117T - m II \:1m EM. Then, letting a denote a complex number
and moE M and defining 7T1 = a7T + mo one obtains the inequality
lJ(af + mo) - m II ~ II(af + mo) - 7T1 II + r 11 7T1 - m II \:1m E M.

Proof The case M = {O} is trivial. Assume that M =F {O}. Since for all
mE M, Ilf - 7T II + r 117T - m II ~ Ilf - m II ~ Ilf - 7T II + 117T - m II, one
has 0 < r ~ 1. Hence, if a = 0 the result follows trivially and if a =F 0,
then for all m EM,

II(af + mo) - mil = I a Illf - Ija(m - mo)11

~ Ia Illf - 7T II + I a I r 117T - Ija(m - mo)11

= II(af + mo) - 7T1 II + r 117T1 - mil,

where we have used the strong unicity of 7T in the estimate.

3. STRONG UNICITY IN ARBITRARY NORMED LINEAR SPACES

For convenience we reiterate our assumptions: M denotes an arbitrary
subspace of the complex normed linear space W,f E W, andf ¢ M. Theorem 1
below is due to Wulbert [6, 7], who proved it in the real case. A proof is given
for completeness.

THEOREM 1. There exists an element 7T in M and a real number r > 0 such
that

sup ReL(m) ~ rllmll\:lmEM
Le!l'"

if and only if

Ilf - m II ~ Ilf - 7T [I + r 117T - m II \:1m E M.

Proof By Proposition 1 we assume without loss that 7T = 0 and Ilfll = 1.
Suppose first that the real number r satisfies

sup ReL(m) ~ rllmll\:lmEM.
Le!l'o

Then for every m E M one has

IIf - m II = sup I L(f - m)1 ~ sup I L(f - m)1 ~ sup Re L(f - m)
Le<M •f) * Le!l'0 Le!l'o
IILII~1

= 1 + sup Re L(-m) ~ 1 + r II mil.
Le!l'o
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Conversely, suppose that Ilf - m II ~ 1 + r II m II "1m E M. Let m be an
arbitrarily chosen but fixed element of M, and define L' E <m,f)* by
L'(am + bf) = ar [I m II + b for all complex numbers a and b. If b = 0 then
since r :S;: 1, one has I L'(am)1 = Ia I r II mil :S;: II am II; and if b =I=- 0 then

I L'(am + bf)1 = Iar II m II + b I = Ib I (r II -(alb)m II + 1)

:S;: I b Illf+ (alb)m II = II am + bfll,

where we have used the estimate Ilf - m II ~ 1 + r II m II "1m E M. Thus,
II L' II :S;: 1. But L'f = I, so I[ L' II = 1. Hence, by the Hahn-Banach theorem
we may assume without loss that L' E<M,f) * and that L' E!l'o. Since
Re L'(m) = r II m II one has SUPLE2' Re L(m) ~ r [I mil.o

Theorem 2 below gives another characterization of strong unicity. Its
proof follows from Theorem I and the following lemma.

LEMMA 2. The set K7T n M is bounded if and only if there exists r > 0
such that SUPLE2'7T Re L(m) ~ r I[ m II "1m E M.

Proof Suppose first that K7T n M is bounded and let R > 0 be chosen
such that for all mE M, II m II = I, one has Rm ¢: K7T n M. Thus,
SUPLE2' Re L(Rm) > Ilf - 7T II and, hence, letting r = Ilf - 7T IIIR one has
SUPLE2'7T Re L(m) ~ r II m II "1m E M. Conversely, suppose that there exists
r > 0 ~uch that SUPLE2' Re L(m) ~ r II m II "1m EM. Then if m E M and
II m II > Ilf - 7T II/r one has sup Re L(m) > Ilf - 7T II, which means that
m ¢: K7T and, hence, m ¢: K7T n M. Thus, K7T n M is contained in a sphere,
centered at the origin, of radius Ilf - 7T Illr.

THEOREM 2. There exists an element 7T E M and a real number r > 0
such that

Ilf - m II ~ Ilf - 7T II + r 117T - m II "1m E M

if and only if K7T n M is bounded.

COROLLARY. K7T n M is boundedfor at most one element 7T E M.

In Example I the unit ball in lp for p > 2 contains the 12 unit ball. Clearly
then the lp unit ball will also be "tangent" to the hyperplane defined by L o
and 0 is not a strongly unique best approximate to f in lp. In general,
let II . 111 be a norm on Wand assume without loss that Ilflll = I and that 0
is a best approximate to ffrom M in the norm II '111' Let (W, 11'10 denote
W with the norm II . II. If II . liz is another norm on W, then the unit ball in
(W, II . liz) is contained in the unit ball in (W, II 111) if and only if II will :S;:
II w liz Vw E w. If Ilf[lz = I and II will :S;: II w liz Vw E W, then 0 is also a best
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approximate to f in the norm II . 112 . As an application of the last theorem
we show the same result for strong uniqueness.

COROLLARY. Let II '111 and II '112 be two norms on W. Assume that

(i) 0 is a strongly unique best approximate to f in (W, II . 111),

(ii) II w 111 ~ II W 112 Vw E W,

(iii) IIfl12 = 1.

Then 0 is a strongly unique best approximate to f in (W, II . 112)'

Proof For any linear functional L on (M,f) with II L 111 < 00, condi­
tion (ii) implies that II L 112 ~ II L 111' Let !l'oi = {L: Lf = I = II L Iii} for
i = 1,2. If L E !l'o\ then Lf = I ~ II L 112 ~ II L 111, and, hence, !l'l h !l'02.
Therefore, the corresponding supporting cones Kl and K 2 satisfy K 2 C K l •

By the last theorem Kl n M is bounded. Therefore, K2 n M is bounded
and the last theorem completes the proof.

Theorems 3 and 4 taken together give another characterization of strong
unicity when M is finite dimensional.

THEOREM 3. If there exists an element TT E M and a real number r > 0
such that

Ilf - mil;? Ilf - TT II + r IITT - mil 'v'm E M

then the set

{z E (M,f): Re L 17z = Ilf - TT II} n K l7

consists of exactly those elements of the form x = (1 + ia)(f - TT) where a
denotes an arbitrary real number.

Proof If x = (I + ia)(f - TT) then clearly x E {z E (M,f): Re L 17z =
Ilf - TT II} n K l7 (independently of the hypothesis).

Now suppose x E {z E (M,f): Re L 17z = Ilf - TT II} n K 17 • Since Re L 17x =
Ilf - TT II one has x = m + (1 + ia)f for some m and some real number a.
Since x E Kl7 one has II f - TT II ;? Re Lx = Re L(m + (I + ia)f) =
Re L(m + (1 + ia)TT) + Ilf- TT II for all L E!l'l7 • Thus, Re L(m + (I + ia)TT) ~
oVL E!l'17' Hence, SUPLe2' Re L(m + (l + ia)TT) ~ O. From Theorem 1
one concludes that m = -(1 + ia)TT.

THEOREM 4. Let M be finite dimensional. If there exists an element
TT E M such that

{z E (M,f>: Re L17(z) = Ilf - TT II} n K l7
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consists of exactly those elements of the form x = (l + ia)(f - 7T) where a
is an arbitrary real number then there exists a real number r > 0 such that

Ilf - m II ~ Ilf - 7T II + r 117T - mil Vm E M.

Proof If there exists no such r, then from Theorem lone concludes that
infmeM.llmll=1 SUPLe.!l'" Re L(m) ~ O. Since the unit ball in M is compact
there exists mo E M, II mo II = 1 such that SUPLe.!l' Re L(mo) ~ O. Hence,
mo+ (l + ia)(f - 7T) belongs to {z E <M,j): Re"L,,(z) = Ilf - 7T II} n K"
for all a. This violates the hypothesis.

The following example shows that Theorem 4 is, in general, no longer
true if the hypothesis that M be finite dimensional is deleted.

EXAMPLE 3. Let W be the real normed linear space consisting of all
sequences of the form a = {ai}~' where ai is real Vi and SUPI<;;i<oo Iai I < (f).

Addition and scalar multiplication are defined component-wise and
II a II = SUPI<;;i<oo I ai I. Let M be the subspace consisting of all sequences
such that a3i = -ia3i-I = ia3i-2 (i = 1,2, ). A general element of M then
has the form (bI , -bl , bI , b2 , -b2 , 2b2 , ). Letf= {fi}~ = (l, 1,...), i.e.,
Ii = 1 Vi. Clearly 0 is the unique best approximate to f from M. For an
arbitrary g = {gi} E <M, f) the element L o (E~) has the form Log =
t(gl + g2)' It is easily verified that Lo(M) = 0, Lof = 1 = II Lo II, and,
hence, {z E <M, f): LoZ = I} = f + M. For each i (1 ~ i ~ n) we define
Vi} E~ by Vi}(g) = gi, g = {gi}~ E <M,f). Ifg E {z E <M,f): Loz = I} n Ko
then g has the form (l + bl , 1 - bi , 1 + bi , 1 + b2 , 1 - b2 , 1 + 2b2 ,...)
with 1 + bi ~ 1 and 1 - bi ~ 1 (1 ~ i ~ n), and, hence, hi = 0 Vi. Thus,
{z E <M,j): Loz = I} n Ko = {f}. To show that 0 is not a strongly unique
best approximate tofwe define an infinite sequence f3n = {bin}f=l (n = 1,...)
on the unit ball in M by

i=l=n
i = n

(i, n = 1,..,).

The sequence {f3n}:=1 has the form

f31 = (1, -1, 1,0,0,0,...),

f32 = (0,0,0, !, -t, 1,0,0,...).

Thus, Ilf - f3n II = 1 + lin (n = 1,2,...) which means that there exists no
r > 0 such that Ilf - f3n II ~ 1 + r II f3n II.
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4. STRONG UNICITY IN C(X)

In this section X denotes a nonempty compact Hausdorff space and C(X)
denotes the vector space of continuous complex valued function defined
on X with the supremum norm. As before M denotes a subspace of C(X)
andf denotes an arbitrary element of C(X) which does not belong to M.

The following lemma can be found in [5] and [8].

LEMMA 3. Let M be a subspace of C(X) of dimension n (n ~ I), and
let L be a nonzero linear functional defined on M. Then there exist points
PI, ..., Pr in X (r:( 2n - I) and nonzero constants 1X1 , ... , IXr such that
L = L;~llX;Lp. , where Lp.(g) = g(p;) Vg E M (l :( i :( r); and L:=l I IX; I =
II L II. Further, 'if g* E M, 'II g* II = I and Lg* = II L II then g*(p;) = sgn IX;

(I :( i :( r).

The next theorem which characterizes strongly unique best approximates
can be thought of as a generalization of the Kolmogorov condition [3] for
when r = 0 it reduces to this well known condition.

THEOREM 5. Let 7T E M and A = {x E X: Ij(x) - 7T(X)j = Ilf - 7T II}. Then
the real number r > 0 satisfies

max Re[(f(x) - 7T(X» m(x)] ~ r Ilf - 7T III1 m II "1m E M
:teA

if and only if

Ilf - m II ~ Ilf - 7T II + r 117T - m II "1m EM.

Proof We assume first that

Ilf - m II ~ Ilf - 7T II + r 117T - m II "1m E M.

Let L E 2" and mE M. By restricting L to <m,j - 7T) one has from Lemma 3
that there exists Xl"'" X r E A (r :( 3) such that

r

Lm = L jlX; Illf - 7T 11-1 (f(x;) - 7T(X;) m(x;).
;=1

Thus,

Re Lm :( max Re[llf - 7T 11-1 (I(x) - 1T(X) m(x)l.
xeA
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One then obtains

max Re[(f(x) - 7T(X» m(x)] ;? Ilf - 7T IIXEA

. sup Re Lm ;? r Ilf - 7T 11I1 m II
LE!Z'rr

where the last estimate is obtained from Theorem I.
Conversely if

max Re[( f(x) - 7T(X» m(x)] ;? r Ilf - 7T 1III m IIxEA

for all m E M one defines Lx E f£'rr (x E A) by

Lxg = II1- 1T 11-1 (f(x) - 7T(X» g(x) \:Ig E <M, f),

263

to obtain SUPLE!Z'rr Re Lm ;? maxXEA Re Lxm ;? r II m II \:1m E M. By Theo­
rem I then III - mil;? Ilf - 7T II + r 117T - m II \:1m E M.

Remark 1. If the subspace M of the above theorem is assumed to be
finite dimensional then

max Re[(f(x) - 7T(X» m(x)] > 0 \:1m E M, m oF 0,
xEA

if and only if there exists r > 0 such that

max Re[(f(x) - 7T(X» m(x)] > rill - 7T I1II m II \:1m E M.XEA

This is easily verified by noting that the unit ball in <M,J) is compact.
In other words a necessary and sufficient condition that there exists r > 0
such that

III - mil;? III - 7T II + r 117T - m II \:1m EM

is that

sup Re[(f(x) - 7T(X» m(x)] > 0
xEA

for all m E M, m oF O.

The following example shows that there exists an infinite dimensional
subspace M of some C(X) such that there is an elementfE C(X), III1I = 1,
such that maxxEAf(x) m(x) > 0 \:1m EM, m oF 0, but the zero function
which is a unique best approximate toI is not a strongly unique best approxi­
mate.
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EXAMPLE 4. Let X = [-2, 2] and f (x), x E [-2, 2], be an even function
defined on [0, 2] by

o ~ x ~ t,
t ~ x ~ 1,
1 ~ x ~ 2.

Let M be the odd polynomials, i.e.,

M = If akx2k- 1 : ak real (k = 1,... , n) n = 1,2,... 1.
k=l

Sincefis an even function, 0 is a unique best approximate toffrom M and
clearly max"'EA f(x) m(x) > 0 for all mE M, m =F O. Now let g(x), x E [-2,2]
be an odd function defined on [0, 2] by

o~ x ~ t,
! ~ x ~ 1,
1 ~ x ~ 2.

Then II g II = ! and II g - fll = 1. So if {mn};;'=l is a sequence in M such that
limn _ oo II g - mn II = 0 then limn _ oo II mn II =! and limn _ oo Ilf - mn II = 1.
The existence of such a sequence is ensured by the Weierstrass theorem.
Thus, there exists no r > 0 such that Ilf - mn II ;;:, 1 + r II mn II, n = 1,2,... ,
i.e., 0 is not a strongly unique best approximate to f

The next theorem is a generalization of a result of Rivlin and Shapiro [51.

THEOREM 6. Let 7T E M and A = {x E X: If(x) - 7T(X)I = Ilf - 7T II}. Let
gl ,... , gn be a basis for the subspace M of C(X), and let con E denote the
convex hull in complex n-space of

E = {«f(x) - 7T(X)) gix), ... , (f(x) - 7T(X)) gn(x)): X E A}.

Then the origin in complex n-space belongs to the interior of con E if and
only if there exists r > 0 such that

Ilf - m II ;;:, Ilf - 7T II + r 117T - m II 'v'm E M.

Proof. That there exists r > 0 such that

Ilf - m II ;;:, [If - 7T II + r 117T - mil 'v'm EM

is equivalent to

max Re[(f(x) - 7T(X)) m(x)] > 0 'v'm E M, m -=1= 0,
xEA
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which in turn is equivalent to

n

max Re L 0i( f(x) - 1I'(x)) gi(X) > 0
xEA ;=1

265

for all choices of the complex numbers 01 , •.• , an not all of which are zero.
Since A is a compact set so is E. And whenever (01 "", an) are arbitrarily
chosen complex numbers not all zero, the set of all vectors (Zl , .•. , zn) in
complex n-space satisfying

n n

Re L aizi = max Re L: oi(f(x) - 1I'(x)) g;(x)
i=l xEA i=l

is a supporting plane of con E. Further every supporting hyperplane is
obtained in this manner. Thus,

max Re(f(x) - 1I'(x)) m(x) > 0 "1m E M, m =10 0,
xEA

is equivalent to: the zero vector (obtained by setting Zl = ... = Zn = 0),
belongs to every half space containing E, and lies on no supporting hyper­
plane of con E, which, since E is compact, is equivalent to the fact that the
zero vector belongs to the interior of con E.

Remark 2. If 11' is a strongly unique best approximate to fE C(X), from
an n-dimensional subspace M of C(X), then, since the convex hull of E has
an interior, E must consist of at least n + 1 points. One might guess that
when X is a compact interval of the real line, the error function f - 11'

equioscillates. The following example shows that in general this is not true.

EXAMPLE 5. Let X = [-1, 1], g(x) = x (-1 :s;; x:S;; 1), M = (g), and
f(x) - 1 (-1 :s;; x :s;; 1). Then for all mE M lif - m Ii = 1 + Ii m II so °is
a strongly unique best approximate to ffrom M. However, the error function
is f(x) - 0 ~ 1 (-1 :s;; x :s;; 1) which never takes on a negative value and,
hence, cannot equioscillate.
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