JOURNAL OF APPROXIMATION THEORY 9, 255-266 (1973)

Characterizations of Strong Unicity in Approximation Theory

M. W. BARTELT* AND H. W. MCLAUGHLIN

Department of Mathematics, Rensselaer Polytechnic Institute, Troy, New York 12181

Communicated by G. G. Lorentz

Received October 27, 1971

1. INTRODUCTION

In this note M denotes a subspace of the complex normed linear space W. An element π in M is called a best approximate to an element f in W if

 $\|f-m\| \ge \|f-\pi\|$

for all m in M; π is a unique best approximate to f if the inequality is strict for all m in M, $m \neq \pi$; π is a strongly unique best approximate to f if there exists a real number r > 0 such that

$$||f - m|| \ge ||f - \pi|| + r ||\pi - m||$$

for all m in M. When M is a Haar subspace of C(X), the space of continuous real valued functions on a compact Hausdorff space X with the supremum norm, Newman and Shapiro [4] have shown that to every f in C(X) there exists a strongly unique best approximate from M. One concludes from Haar's theorem [2] that when M is a finite dimensional subspace of C(X), but not a Haar subspace, there exists at least one f in C(X) to which a best approximate from M is not unique and, hence, not strongly unique.

In the theorems below we characterize those elements of W for which the best approximate from M is strongly unique. This is done by extending a notion introduced by Haar [2]. When M is a finite dimensional subspace of C(X) and X a compact subset of *n*-dimensional Euclidean space, Haar characterized the best approximate to an element f in C(X) of norm one by means of particular supporting hyperplane to the unit ball in $\langle M, f \rangle$ (the

^{*} The research of this author was supported by N. S. F. Grant No. G. U. 2605.

linear span of M and f in W). We characterize a strongly unique best approximate in an arbitrary normed linear space W by means of a particular supporting cone to the unit ball in $\langle M, f \rangle$.

In addition, we give two other characterizations of strong unicity, one of which is a "refinement" of the Kolmogorov condition [3] when M is a finite dimensional subspace of C(X).

2. DISCUSSION AND NOTATION

If f belongs to M then $\pi = f$ is the unique best approximate to f from M and it is trivially strongly unique. Henceforth, we assume that f is an arbitrarily chosen but fixed element of W and that $f \notin M$.

We denote by $\langle M, f \rangle$ the linear span of M and f, and by $\langle M, f \rangle^*$ the dual of $\langle M, f \rangle$. Further, for each $\pi \in M$ we let

$$\mathscr{L}_{\pi} = \{L \in \langle M, f \rangle^* \colon L(f - \pi) = ||f - \pi|| \text{ and } ||L|| = 1\}.$$

Fixing $\pi \in M$ and letting $B = \{z \in \langle M, f \rangle : ||z|| = ||f - \pi||\}$ we remark that \mathscr{L}_{π} is exactly the set of continuous linear functionals L defined on $\langle M, f \rangle$ such that $\{z \in \langle M, f \rangle : \operatorname{Re} Lz = ||f - \pi||\}$ is a supporting plane to B at $f - \pi$. For if $L \in \langle M, f \rangle^*$ is such that $\{z \in \langle M, f \rangle : \operatorname{Re} Lz = ||f - \pi||\}$ is a supporting plane to B at $f - \pi$ then $\operatorname{Re} Lz \leq ||z||$ for all $z \in \langle M, f \rangle$. Hence, for every complex number a and all $m \in M$ one has

$$|L(m + af)|^{2} = \overline{L(m + af)} L(m + af)$$

$$= L[(\overline{L(m + af)})(m + af)]$$

$$= \operatorname{Re} L[\overline{L(m + af)}(m + af)]$$

$$\leq |L(m + af)| ||m + af||.$$

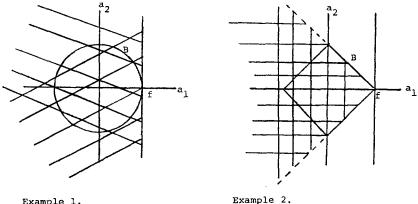
Thus, $||L|| \leq 1$. Thus, since Re $L(f - \pi) = ||f - \pi||$, one actually has $L(f - \pi) = ||f - \pi||$. Thus, $L \in \mathscr{L}_{\pi}$. The converse follows immediately.

For each $\pi \in M$ we write $K_{\pi} = \{z \in \langle M, f \rangle$: Re $Lz \leq ||f - \pi|| \forall L \in \mathscr{L}_{\pi}\}$. The set K_{π} is the supporting cone to the ball in $\langle M, f \rangle$ of radius $||f - \pi||$ at the point $f - \pi$. Further, for each $\pi \in M$ we denote by L_{π} that element of $\langle M, f \rangle^*$ defined by $L_{\pi}(m + af) = a ||f - \pi||$ for all $m \in M$ and for all complex numbers *a*. It follows that $||L_{\pi}|| \ge 1$.

Haar's result [2] (as is well known) can be stated in the setting of an arbitrary normed linear space as follows: The element $\pi \in M$ is a best approximate to $f \in W$ if and only if $||L_{\pi}|| = 1$, i.e., if and only if $L_{\pi} \in \mathscr{L}_{\pi}$; further

if π is a best approximate to f then it is unique if and only if the hyperplane $\{z \in \langle M, f \rangle: \operatorname{Re} L_{\pi} z = \|f - \pi\|\}$ intersects the ball in $\langle M, f \rangle$ of radius $||f - \pi||$ at precisely $f - \pi$.

To illustrate Haar's ideas and give a geometric interpretation of the theorems below we discuss two examples. In both Examples 1 and 2, W is taken to be $\{(a_1, a_2): a_1, a_2 \text{ are real}\}$ (with the usual rules for addition and scalar multiplication), $M = \{(0, a_2): a_2 \text{ is real}\}$, and f = (1, 0). In Example 1 the norm is the l_2 or Euclidean norm, i.e., $||(a_1, a_2)|| = (a_1^2 + a_2^2)^{1/2}$ and in Example 2 the norm is taken to be the l_1 norm, i.e., $||(a_1, a_2)|| = |a_1| + |a_2|$. The vertical line through f in each case represents the hyperplane defined by L_0 , and the closed curves B denote the unit circle in $\langle M, f \rangle$. In both cases 0 is a unique best approximate to f. In Example 1 zero is not a strongly unique best approximate to f; in Example 2 it is. In each case the shaded areas represent the supporting cone K_0 . Roughly speaking the theorems below indicate that if the unit ball B is "tangent" to the hyperplane defined by L_0 then 0 is not a strongly unique best approximate, otherwise it is. Or as Theorems 3 and 4 assert, in the case when M is a finite dimensional subspace of a real normed linear space, 0 is a strongly unique best approximate to fif and only if the supporting cone K_0 intersects the hyperplane defined by L_0 at exactly one point, namely f; see the foregoing examples.



Example 1.

FIGURE 1

In the proof of Theorem 1 below we assume that f is normalized so that $1 = ||f|| = \inf_{m \in M} ||f - m||$. The following proposition shows that this normalization assumption can be made without loss of generality.

PROPOSITION 1. If the best approximate to f from M is strongly unique then so is the best approximate to every element of $\langle M, f \rangle$. More precisely,

STRONG UNICITY

suppose that for some $\pi \in M$ there exists r > 0 such that $||f - m|| \ge ||f - \pi|| + r ||\pi - m|| \forall m \in M$. Then, letting a denote a complex number and $m_0 \in M$ and defining $\pi_1 = a\pi + m_0$ one obtains the inequality $||(af + m_0) - m|| \ge ||(af + m_0) - \pi_1|| + r ||\pi_1 - m|| \forall m \in M$.

Proof. The case $M = \{0\}$ is trivial. Assume that $M \neq \{0\}$. Since for all $m \in M$, $||f - \pi|| + r ||\pi - m|| \leq ||f - m|| \leq ||f - \pi|| + ||\pi - m||$, one has $0 < r \leq 1$. Hence, if a = 0 the result follows trivially and if $a \neq 0$, then for all $m \in M$,

$$\|(af + m_0) - m\| = |a| \|f - 1/a(m - m_0)\|$$

$$\geq |a| \|f - \pi\| + |a| r \|\pi - 1/a(m - m_0)\|$$

$$= \|(af + m_0) - \pi_1\| + r \|\pi_1 - m\|,$$

where we have used the strong unicity of π in the estimate.

3. STRONG UNICITY IN ARBITRARY NORMED LINEAR SPACES

For convenience we reiterate our assumptions: M denotes an arbitrary subspace of the complex normed linear space $W, f \in W$, and $f \notin M$. Theorem 1 below is due to Wulbert [6, 7], who proved it in the real case. A proof is given for completeness.

THEOREM 1. There exists an element π in M and a real number r > 0 such that

$$\sup_{L\in\mathscr{L}_{\pi}}\operatorname{Re} L(m) \geqslant r \parallel m \parallel \forall m \in M$$

if and only if

$$||f-m|| \ge ||f-\pi|| + r ||\pi-m|| \forall m \in M.$$

Proof. By Proposition 1 we assume without loss that $\pi = 0$ and ||f|| = 1. Suppose first that the real number r satisfies

$$\sup_{L\in\mathscr{L}_0} \operatorname{Re} L(m) \geq r || m || \forall m \in M.$$

Then for every $m \in M$ one has

$$\|f-m\| = \sup_{\substack{L \in \mathcal{L}_0, f \\ \|L\| = 1}} |L(f-m)| \ge \sup_{L \in \mathcal{L}_0} |L(f-m)| \ge \sup_{L \in \mathcal{L}_0} \operatorname{Re} L(f-m)$$
$$= 1 + \sup_{L \in \mathcal{L}_0} \operatorname{Re} L(-m) \ge 1 + r \|m\|.$$

Conversely, suppose that $||f - m|| \ge 1 + r ||m|| \forall m \in M$. Let *m* be an arbitrarily chosen but fixed element of *M*, and define $L' \in \langle m, f \rangle^*$ by L'(am + bf) = ar ||m|| + b for all complex numbers *a* and *b*. If b = 0 then since $r \le 1$, one has $|L'(am)| = |a| r ||m|| \le ||am||$; and if $b \ne 0$ then

$$|L'(am + bf)| = |ar||m|| + b| = |b| (r|| - (a/b)m|| + 1)$$

$$\leq |b| ||f + (a/b)m|| = ||am + bf||,$$

where we have used the estimate $||f - m|| \ge 1 + r ||m|| \forall m \in M$. Thus, $||L'|| \le 1$. But L'f = 1, so ||L'|| = 1. Hence, by the Hahn-Banach theorem we may assume without loss that $L' \in \langle M, f \rangle^*$ and that $L' \in \mathscr{L}_0$. Since Re L'(m) = r ||m|| one has $\sup_{L \in \mathscr{L}_0} \operatorname{Re} L(m) \ge r ||m||$.

Theorem 2 below gives another characterization of strong unicity. Its proof follows from Theorem 1 and the following lemma.

LEMMA 2. The set $K_{\pi} \cap M$ is bounded if and only if there exists r > 0 such that $\sup_{L \in \mathscr{L}_{\pi}} \operatorname{Re} L(m) \ge r || m || \forall m \in M$.

Proof. Suppose first that $K_{\pi} \cap M$ is bounded and let R > 0 be chosen such that for all $m \in M$, ||m|| = 1, one has $Rm \notin K_{\pi} \cap M$. Thus, $\sup_{L \in \mathscr{L}_{\pi}} \operatorname{Re} L(Rm) > ||f - \pi||$ and, hence, letting $r = ||f - \pi||/R$ one has $\sup_{L \in \mathscr{L}_{\pi}} \operatorname{Re} L(m) \ge r ||m|| \forall m \in M$. Conversely, suppose that there exists r > 0 such that $\sup_{L \in \mathscr{L}_{\pi}} \operatorname{Re} L(m) \ge r ||m|| \forall m \in M$. Then if $m \in M$ and $||m|| > ||f - \pi||/r$ one has sup $\operatorname{Re} L(m) > ||f - \pi||$, which means that $m \notin K_{\pi}$ and, hence, $m \notin K_{\pi} \cap M$. Thus, $K_{\pi} \cap M$ is contained in a sphere, centered at the origin, of radius $||f - \pi||/r$.

THEOREM 2. There exists an element $\pi \in M$ and a real number r > 0 such that

 $||f - m|| \ge ||f - \pi|| + r ||\pi - m|| \forall m \in M$

if and only if $K_{\pi} \cap M$ is bounded.

COROLLARY. $K_{\pi} \cap M$ is bounded for at most one element $\pi \in M$.

In Example 1 the unit ball in l_p for p > 2 contains the l_2 unit ball. Clearly then the l_p unit ball will also be "tangent" to the hyperplane defined by L_0 and 0 is not a strongly unique best approximate to f in l_p . In general, let $\|\cdot\|_1$ be a norm on W and assume without loss that $\|f\|_1 = 1$ and that 0 is a best approximate to f from M in the norm $\|\cdot\|_1$. Let $(W, \|\cdot\|)$ denote W with the norm $\|\cdot\|$. If $\|\cdot\|_2$ is another norm on W, then the unit ball in $(W, \|\cdot\|_2)$ is contained in the unit ball in $(W, \|\cdot\|_1)$ if and only if $\|w\|_1 \le$ $\|w\|_2 \forall w \in W$. If $\|f\|_2 = 1$ and $\|w\|_1 \le \|w\|_2 \forall w \in W$, then 0 is also a best approximate to f in the norm $\|\cdot\|_2$. As an application of the last theorem we show the same result for strong uniqueness.

COROLLARY. Let $\|\cdot\|_1$ and $\|\cdot\|_2$ be two norms on W. Assume that

- (i) 0 is a strongly unique best approximate to f in $(W, \|\cdot\|_1)$,
- (ii) $\|w\|_1 \leq \|w\|_2 \forall w \in W$,
- (iii) $||f||_2 = 1.$

Then 0 is a strongly unique best approximate to f in $(W, \|\cdot\|_2)$.

Proof. For any linear functional L on $\langle M, f \rangle$ with $||L||_1 < \infty$, condition (ii) implies that $||L||_2 \leq ||L||_1$. Let $\mathscr{L}_0^i = \{L: Lf = 1 = ||L||_i\}$ for i = 1, 2. If $L \in \mathscr{L}_0^1$, then $Lf = 1 \leq ||L||_2 \leq ||L||_1$, and, hence, $\mathscr{L}_0^1 \subseteq \mathscr{L}_0^2$. Therefore, the corresponding supporting cones K_1 and K_2 satisfy $K_2 \subset K_1$. By the last theorem $K_1 \cap M$ is bounded. Therefore, $K_2 \cap M$ is bounded and the last theorem completes the proof.

Theorems 3 and 4 taken together give another characterization of strong unicity when M is finite dimensional.

THEOREM 3. If there exists an element $\pi \in M$ and a real number r > 0 such that

$$\|f-m\| \ge \|f-\pi\| + r\|\pi - m\| \forall m \in M$$

then the set

$$\{z \in \langle M, f \rangle : \operatorname{Re} L_{\pi} z = \| f - \pi \| \} \cap K_{\pi}$$

consists of exactly those elements of the form $x = (1 + ia)(f - \pi)$ where a denotes an arbitrary real number.

Proof. If $x = (1 + ia)(f - \pi)$ then clearly $x \in \{z \in \langle M, f \rangle$: Re $L_{\pi}z = ||f - \pi||\} \cap K_{\pi}$ (independently of the hypothesis).

Now suppose $x \in \{z \in \langle M, f \rangle$: Re $L_{\pi}z = ||f - \pi||\} \cap K_{\pi}$. Since Re $L_{\pi}x = ||f - \pi||$ one has x = m + (1 + ia)f for some *m* and some real number *a*. Since $x \in K_{\pi}$ one has $||f - \pi|| \ge \text{Re } Lx = \text{Re } L(m + (1 + ia)f) = \text{Re } L(m + (1 + ia)\pi) + ||f - \pi||$ for all $L \in \mathscr{L}_{\pi}$. Thus, Re $L(m + (1 + ia)\pi) \le 0 \forall L \in \mathscr{L}_{\pi}$. Hence, $\sup_{L \in \mathscr{L}_{\pi}} \text{Re } L(m + (1 + ia)\pi) \le 0$. From Theorem 1 one concludes that $m = -(1 + ia)\pi$.

THEOREM 4. Let M be finite dimensional. If there exists an element $\pi \in M$ such that

$$\{z \in \langle M, f \rangle \colon \operatorname{Re} L_{\pi}(z) = \|f - \pi\|\} \cap K_{\pi}$$

consists of exactly those elements of the form $x = (1 + ia)(f - \pi)$ where a is an arbitrary real number then there exists a real number r > 0 such that

$$||f-m|| \geq ||f-\pi|| + r ||\pi-m|| \forall m \in M.$$

Proof. If there exists no such r, then from Theorem 1 one concludes that $\inf_{m \in M, ||m||=1} \sup_{L \in \mathscr{L}_{\pi}} \operatorname{Re} L(m) \leq 0$. Since the unit ball in M is compact there exists $m_0 \in M$, $||m_0|| = 1$ such that $\sup_{L \in \mathscr{L}_{\pi}} \operatorname{Re} L(m_0) \leq 0$. Hence, $m_0 + (1 + ia)(f - \pi)$ belongs to $\{z \in \langle M, f \rangle : \operatorname{Re} L_{\pi}(z) = ||f - \pi||\} \cap K_{\pi}$ for all a. This violates the hypothesis.

The following example shows that Theorem 4 is, in general, no longer true if the hypothesis that M be finite dimensional is deleted.

EXAMPLE 3. Let W be the real normed linear space consisting of all sequences of the form $a = \{a_i\}_{1}^{\infty}$, where a_i is real $\forall i$ and $\sup_{1 \le i < \infty} |a_i| < \infty$. Addition and scalar multiplication are defined component-wise and $||a|| = \sup_{1 \le i < \infty} |a_i|$. Let M be the subspace consisting of all sequences such that $a_{3i} = -ia_{3i-1} = ia_{3i-2}$ (i = 1, 2,...). A general element of M then has the form $(b_1, -b_1, b_1, b_2, -b_2, 2b_2, ...)$. Let $f = \{f_i\}_{1}^{\infty} = (1, 1, ...)$, i.e., $f_i = 1 \forall i$. Clearly 0 is the unique best approximate to f from M. For an arbitrary $g = \{g_i\} \in \langle M, f \rangle$ the element $L_0 \in \mathscr{L}_0$ has the form $L_0 g =$ $\frac{1}{2}(g_1 + g_2)$. It is easily verified that $L_0(M) = 0$, $L_0 f = 1 = ||L_0||$, and, hence, $\{z \in \langle M, f \rangle : L_0 z = 1\} = f + M$. For each $i \ (1 \le i \le n)$ we define $L^{(i)} \in \mathscr{L}_0$ by $L^{(i)}(g) = g_i, g = \{g_i\}_1^{\infty} \in \langle M, f \rangle$. If $g \in \{z \in \langle M, f \rangle : L_0 z = 1\} \cap K_0$ then g has the form $(1 + b_1, 1 - b_1, 1 + b_1, 1 + b_2, 1 - b_2, 1 + 2b_2, ...)$ with $1 + b_i \leq 1$ and $1 - b_i \leq 1$ ($1 \leq i \leq n$), and, hence, $b_i = 0 \forall i$. Thus, $\{z \in \langle M, f \rangle : L_0 z = 1\} \cap K_0 = \{f\}$. To show that 0 is not a strongly unique best approximate to f we define an infinite sequence $\beta^n = \{b_i^n\}_{i=1}^{\infty} (n = 1,...)$ on the unit ball in M by

$$b_{3i}^n = \begin{cases} 0 & i \neq n \\ 1 & i = n \end{cases}$$
 (i, $n = 1,...$).

The sequence $\{\beta^n\}_{n=1}^{\infty}$ has the form

$$\beta^{1} = (1, -1, 1, 0, 0, 0, ...),$$

$$\beta^{2} = (0, 0, 0, \frac{1}{2}, -\frac{1}{2}, 1, 0, 0, ...).$$

Thus, $||f - \beta^n|| = 1 + 1/n$ (n = 1, 2,...) which means that there exists no r > 0 such that $||f - \beta^n|| \ge 1 + r ||\beta^n||$.

STRONG UNICITY

4. Strong Unicity in C(X)

In this section X denotes a nonempty compact Hausdorff space and C(X) denotes the vector space of continuous complex valued function defined on X with the supremum norm. As before M denotes a subspace of C(X) and f denotes an arbitrary element of C(X) which does not belong to M.

The following lemma can be found in [5] and [8].

LEMMA 3. Let M be a subspace of C(X) of dimension n $(n \ge 1)$, and let L be a nonzero linear functional defined on M. Then there exist points $p_1,...,p_r$ in X $(r \le 2n - 1)$ and nonzero constants $\alpha_1,...,\alpha_r$ such that $L = \sum_{i=1}^r \alpha_i L_{p_i}$, where $L_{p_i}(g) = g(p_i) \forall g \in M$ $(1 \le i \le r)$; and $\sum_{i=1}^r |\alpha_i| =$ ||L||. Further, if $g^* \in M$, $||g^*|| = 1$ and $Lg^* = ||L||$ then $g^*(p_i) = \overline{\operatorname{sgn} \alpha_i}$ $(1 \le i \le r)$.

The next theorem which characterizes strongly unique best approximates can be thought of as a generalization of the Kolmogorov condition [3] for when r = 0 it reduces to this well known condition.

THEOREM 5. Let $\pi \in M$ and $A = \{x \in X : |f(x) - \pi(x)| = ||f - \pi||\}$. Then the real number r > 0 satisfies

$$\max_{x \in \mathcal{A}} \operatorname{Re}[(\overline{f(x) - \pi(x)}) m(x)] \ge r || f - \pi || || m || \forall m \in M$$

if and only if

$$||f - m|| \ge ||f - \pi|| + r ||\pi - m|| \forall m \in M.$$

Proof. We assume first that

$$\|f-m\| \geq \|f-\pi\| + r \|\pi-m\| \forall m \in M.$$

Let $L \in \mathscr{L}_{\pi}$ and $m \in M$. By restricting L to $\langle m, f - \pi \rangle$ one has from Lemma 3 that there exists $x_1, ..., x_r \in A$ $(r \leq 3)$ such that

$$Lm = \sum_{i=1}^{r} |\alpha_i| ||f - \pi ||^{-1} (\overline{f(x_i) - \pi(x_i)} m(x_i).$$

Thus,

$$\operatorname{Re} Lm \leq \max_{x \in A} \operatorname{Re}[\|f - \pi\|^{-1} (\overline{f(x) - \pi(x)} m(x))].$$

One then obtains

$$\max_{x \in A} \operatorname{Re}[(\overline{f(x) - \pi(x)}) m(x)] \ge ||f - \pi||$$
$$\cdot \sup_{L \in \mathscr{L}_{\pi}} \operatorname{Re} Lm \ge r ||f - \pi|| ||m||$$

where the last estimate is obtained from Theorem 1.

Conversely if

$$\max_{x \in A} \operatorname{Re}[(\overline{f(x) - \pi(x)}) m(x)] \ge r \|f - \pi\| \|m\|$$

for all $m \in M$ one defines $L_x \in \mathscr{L}_{\pi} (x \in A)$ by

$$L_xg = \|f - \pi\|^{-1} \left(\overline{f(x) - \pi(x)} \right) g(x) \, \forall g \in \langle M, f \rangle,$$

to obtain $\sup_{L \in \mathscr{L}_{\pi}} \operatorname{Re} Lm \ge \max_{x \in A} \operatorname{Re} L_x m \ge r || m || \forall m \in M$. By Theorem 1 then $||f - m|| \ge ||f - \pi|| + r || \pi - m || \forall m \in M$.

Remark 1. If the subspace M of the above theorem is assumed to be finite dimensional then

$$\max_{x \in \mathcal{A}} \operatorname{Re}[(\overline{f(x) - \pi(x)}) m(x)] > 0 \ \forall m \in M, \ m \neq 0,$$

if and only if there exists r > 0 such that

$$\max_{x\in A} \operatorname{Re}[(\overline{f(x)-\pi(x)}) m(x)] > r || f - \pi || || m || \forall m \in M.$$

This is easily verified by noting that the unit ball in $\langle M, f \rangle$ is compact. In other words a necessary and sufficient condition that there exists r > 0 such that

$$\|f-m\| \ge \|f-\pi\| + r\|\pi - m\| \forall m \in M$$

is that

$$\sup_{x \in A} \operatorname{Re}[(\overline{f(x) - \pi(x)}) m(x)] > 0 \quad \text{for all} \quad m \in M, \quad m \neq 0.$$

The following example shows that there exists an infinite dimensional subspace M of some C(X) such that there is an element $f \in C(X)$, ||f|| = 1, such that $\max_{x \in A} f(x) m(x) > 0 \forall m \in M, m \neq 0$, but the zero function which is a unique best approximate to f is not a strongly unique best approximate.

STRONG UNICITY

EXAMPLE 4. Let X = [-2, 2] and f(x), $x \in [-2, 2]$, be an even function defined on [0, 2] by

$$f(\mathbf{x}) = egin{cases} rac{1}{2} & 0 \leqslant \mathbf{x} \leqslant rac{1}{2}, \ \mathbf{x} & rac{1}{2} \leqslant \mathbf{x} \leqslant 1, \ 1 & 1 \leqslant \mathbf{x} \leqslant 2. \end{cases}$$

Let M be the odd polynomials, i.e.,

$$M = \left\{ \sum_{k=1}^{n} a_k x^{2k-1} : a_k \text{ real } (k = 1, ..., n) \ n = 1, 2, ... \right\}.$$

Since f is an even function, 0 is a unique best approximate to f from M and clearly $\max_{x \in A} f(x) m(x) > 0$ for all $m \in M, m \neq 0$. Now let $g(x), x \in [-2, 2]$ be an odd function defined on [0, 2] by

$$g(x) = \begin{cases} x & 0 \leq x \leq \frac{1}{2}, \\ -x+1 & \frac{1}{2} \leq x \leq 1, \\ 0 & 1 \leq x \leq 2. \end{cases}$$

Then $||g|| = \frac{1}{2}$ and ||g - f|| = 1. So if $\{m_n\}_{n=1}^{\infty}$ is a sequence in M such that $\lim_{n \to \infty} ||g - m_n|| = 0$ then $\lim_{n \to \infty} ||m_n|| = \frac{1}{2}$ and $\lim_{n \to \infty} ||f - m_n|| = 1$. The existence of such a sequence is ensured by the Weierstrass theorem. Thus, there exists no r > 0 such that $||f - m_n|| \ge 1 + r ||m_n||, n = 1, 2, ...,$ i.e., 0 is not a strongly unique best approximate to f.

The next theorem is a generalization of a result of Rivlin and Shapiro [5].

THEOREM 6. Let $\pi \in M$ and $A = \{x \in X : |f(x) - \pi(x)| = ||f - \pi||\}$. Let $g_1, ..., g_n$ be a basis for the subspace M of C(X), and let con E denote the convex hull in complex n-space of

$$E = \{((\overline{f(x) - \pi(x)}) g_1(x), ..., (\overline{f(x) - \pi(x)}) g_n(x)): x \in A\}.$$

Then the origin in complex n-space belongs to the interior of con E if and only if there exists r > 0 such that

$$||f - m|| \ge ||f - \pi|| + r ||\pi - m|| \forall m \in M.$$

Proof. That there exists r > 0 such that

$$\|f-m\| \ge \|f-\pi\| + r\|\pi - m\| \forall m \in M$$

is equivalent to

$$\max_{x\in \mathcal{A}} \operatorname{Re}[(\overline{f(x)-\pi(x)}) m(x)] > 0 \ \forall m \in M, \ m \neq 0,$$

which in turn is equivalent to

$$\max_{x\in A} \operatorname{Re} \sum_{i=1}^{n} a_{i}(\overline{f(x) - \pi(x)}) g_{i}(x) > 0$$

for all choices of the complex numbers $a_1, ..., a_n$ not all of which are zero. Since A is a compact set so is E. And whenever $(a_1, ..., a_n)$ are arbitrarily chosen complex numbers not all zero, the set of all vectors $(z_1, ..., z_n)$ in complex *n*-space satisfying

$$\operatorname{Re} \sum_{i=1}^{n} a_{i} z_{i} = \max_{x \in \mathcal{A}} \operatorname{Re} \sum_{i=1}^{n} a_{i} (\overline{f(x) - \pi(x)}) g_{i}(x)$$

is a supporting plane of con E. Further every supporting hyperplane is obtained in this manner. Thus,

$$\max_{x \in \mathcal{A}} \operatorname{Re}(\overline{f(x) - \pi(x)}) m(x) > 0 \ \forall m \in M, \ m \neq 0,$$

is equivalent to: the zero vector (obtained by setting $z_1 = \cdots = z_n = 0$), belongs to every half space containing E, and lies on no supporting hyperplane of con E, which, since E is compact, is equivalent to the fact that the zero vector belongs to the interior of con E.

Remark 2. If π is a strongly unique best approximate to $f \in C(X)$, from an *n*-dimensional subspace *M* of C(X), then, since the convex hull of *E* has an interior, *E* must consist of at least n + 1 points. One might guess that when *X* is a compact interval of the real line, the error function $f - \pi$ equioscillates. The following example shows that in general this is not true.

EXAMPLE 5. Let X = [-1, 1], g(x) = x $(-1 \le x \le 1)$, $M = \langle g \rangle$, and $f(x) \equiv 1$ $(-1 \le x \le 1)$. Then for all $m \in M || f - m || = 1 + || m ||$ so 0 is a strongly unique best approximate to f from M. However, the error function is $f(x) - 0 \equiv 1$ $(-1 \le x \le 1)$ which never takes on a negative value and, hence, cannot equioscillate.

References

- 1. E. W. CHENEY, "Introduction to Approximation Theory," McGraw Hill, New York, 1966.
- A. HAAR, Die Minkowskische Geometrie und die Annaherung an stetige Funktionen, Math. Ann. 78 (1918), 294-311.
- 3. A. N. KOLMOGOROV, A remark on the polynomials of P. L. Cebysev Deviating the least from a given function, *Uspehi Mat. Nauk.* 3 (1948), 216–221 (Russian).

- 4. D. J. NEWMAN AND H. S. SHAPIRO, Some theorems on Cebysev approximation, Duke Math. J. 30 (1963), 673-681.
- 5. T. J. RIVLIN AND H. S. SHAPIRO, A unified approach to certain problems of approximation and minimization, J. Siam 9 (1961).
- 6. D. E. WULBERT, Uniqueness and differential characterization of approximation from manifolds of functions, Bull. Amer. Math. Soc. 77 (1971), 88-91.
- 7. D. E. WULBERT, Uniqueness and differential characterization of approximations from manifolds of functions, *Amer. J. Math.* 18 (1971), 350-366.
- S. I. ZUHOVICKII, On approximation of real functions in the sense of P. L. Cebysev, Uspehi Mat. Nauk. 11 (1956), 125-159 (Russian); Amer. Math. Soc. Transl. 19 (1956), 221-252.